LOGIC GATES

Subject Name – Digital Electronics

Subject Code – BPHY-601

Class – B.Sc. NM, 6th sem

By Dr. Pooja, Assistant Professor

Physics, SBAS, MAU, Baddi¹HP

LOGIC GATES

A logic gate is a device that acts as a building block for digital circuits. They perform basic logical functions that are fundamental to digital circuits. In a circuit, logic gates will make decisions based on a combination of digital signals coming from its inputs.

TYPES OF LOGIC GATES

There are Three types of basic Logic Gates

- ➢OR Gate
- ► AND Gate
- ► NOT Gate

OR GATE

The OR gate is a digital logic that implements logical disjunction. An OR gate produces a high output when any one of the input is high. It produces a low output when all the inputs are low.

$$(X=A+B)$$

2 Input OR gate Truth Table

INP	UTS	OUTPUTS
A	В	х
0	0	0
0	1	1
1	0	1
1	1	1

AND GATE

It will produce a high output when all the inputs are high otherwise the output is low.

$$(X=A.B)$$

Truth Table of 2 input AND gate

Inp	uts	Outputs
A	В	x
0	0	0
0	1	0
1	0	0
1	1	1

NOT GATE

It produces high output when the input is low and vice versa. The NOT gate is also called as an inverter.

$$(Q=A')$$

Truth Table

Input	Output
Α	Υ
0	1
1	0

Universal Gates

A universal gate is a gate which can implement any Boolean function without need to use any other gate type.

Types of Universal Gate

- ► NAND Gate
- **►NOR Gate**

NAND GATE

NAND gate is AND gate followed by NOT gate. (Q=(A.B)')

NOR GATE

NOR gate is OR gate followed by NOT gate. (X=(A+B)')

2 input NOR gate truth table

INPUTS		OUTPUTS	
A	В	X	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Exclusive-OR Gate

When both inputs are same, it gives low output.

$$Y = (A \oplus B) = A'.B+A.B'$$

Truth Table

INP	UTS	OUTPUT
А	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Symbol -

Exclusive-NOR Gate

The Ex NOR gate gives high output when all the inputs are at same logic level.

Truth Table

INPUTS		OUTPUT
Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Symbol-

Thank you

